Extensions 1→N→G→Q→1 with N=C22.D4 and Q=D7

Direct product G=N×Q with N=C22.D4 and Q=D7
dρLabelID
D7×C22.D4112D7xC2^2.D4448,1105

Semidirect products G=N:Q with N=C22.D4 and Q=D7
extensionφ:Q→Out NdρLabelID
C22.D41D7 = C22⋊C4⋊D14φ: D7/C7C2 ⊆ Out C22.D41124C2^2.D4:1D7448,587
C22.D42D7 = C14.792- 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:2D7448,1101
C22.D43D7 = C14.1202+ 1+4φ: D7/C7C2 ⊆ Out C22.D4112C2^2.D4:3D7448,1106
C22.D44D7 = C14.1212+ 1+4φ: D7/C7C2 ⊆ Out C22.D4112C2^2.D4:4D7448,1107
C22.D45D7 = C14.822- 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:5D7448,1108
C22.D46D7 = C14.612+ 1+4φ: D7/C7C2 ⊆ Out C22.D4112C2^2.D4:6D7448,1110
C22.D47D7 = C14.1222+ 1+4φ: D7/C7C2 ⊆ Out C22.D4112C2^2.D4:7D7448,1111
C22.D48D7 = C14.622+ 1+4φ: D7/C7C2 ⊆ Out C22.D4112C2^2.D4:8D7448,1112
C22.D49D7 = C14.832- 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:9D7448,1113
C22.D410D7 = C14.642+ 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:10D7448,1114
C22.D411D7 = C14.842- 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:11D7448,1115
C22.D412D7 = C14.662+ 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:12D7448,1116
C22.D413D7 = C14.672+ 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:13D7448,1117
C22.D414D7 = C14.852- 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:14D7448,1118
C22.D415D7 = C14.682+ 1+4φ: D7/C7C2 ⊆ Out C22.D4112C2^2.D4:15D7448,1119
C22.D416D7 = C14.862- 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4:16D7448,1120
C22.D417D7 = C4⋊C4.197D14φ: trivial image224C2^2.D4:17D7448,1102
C22.D418D7 = C4⋊C428D14φ: trivial image112C2^2.D4:18D7448,1109

Non-split extensions G=N.Q with N=C22.D4 and Q=D7
extensionφ:Q→Out NdρLabelID
C22.D4.1D7 = (C22×C28)⋊C4φ: D7/C7C2 ⊆ Out C22.D41124C2^2.D4.1D7448,96
C22.D4.2D7 = C14.802- 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4.2D7448,1103
C22.D4.3D7 = C14.602+ 1+4φ: D7/C7C2 ⊆ Out C22.D4224C2^2.D4.3D7448,1104

׿
×
𝔽